MicroRNAs: Decoders of Dysbiosis into Metabolic Diseases?
نویسنده
چکیده
The identification of molecular factors bridging gut microbiota dysbiosis to alterations of host metabolism still remains a major goal in biomedical research. In fact, on one hand, there is a worldwide consensus about the systemic impact, from brain to liver, from heart to adipose tissue, of gut microbiota dysbiosis. On the other hand, beyond the microbial production of short chain fatty acids and their vast metabolic properties, little is known about the molecular mechanisms linking a change in the activity of gut microbes to a modification of host cell metabolism. In this context, microRNAs (also known as miRs) are promising molecules which could allow explaining how dysbiosis is converted into metabolic outcomes since: 1miRs are pleiotropic regulators of gene expression, targeting multiple mRNAs at once; 2miRs expression in specific organs such as the intestine has been demonstrated to be under the control of gut microbiota; 3alterations in miRs expression have been found in the majority of tissues targeted by gut microbiota dysbiosis during metabolic diseases such as liver, adipose tissue, pancreas, skeletal muscle, intestine, heart and also the brain. In this review publications in the growing field of miRsbased metabolic control at a systemic level will be discussed together with a putative link with gut microbiota dysbiosis.
منابع مشابه
Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance
Pattern recognition receptors link metabolite and bacteria-derived inflammation to insulin resistance during obesity. We demonstrate that NOD2 detection of bacterial cell wall peptidoglycan (PGN) regulates metabolic inflammation and insulin sensitivity. An obesity-promoting high-fat diet (HFD) increased NOD2 in hepatocytes and adipocytes, and NOD2(-/-) mice have increased adipose tissue and liv...
متن کاملInsights into role of microRNAs in cardiac development, cardiac diseases, and developing novel therapies
Objective(s): MicroRNAs (miRNAs) are a subfamily of small noncoding RNAs that play a variety of roles in regulating gene expression in nearly all organisms. They affect different biological pathways by post-transcriptionally regulating mRNAs. Aside from miRNAs’ role in maintaining cellular homeostasis, their perturbation is related to several pathologic states and dis...
متن کاملDysbiosis of the gut microbiota in disease
There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS), and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity.
متن کاملFar from the Eyes, Close to the Heart: Dysbiosis of Gut Microbiota and Cardiovascular Consequences
These days, the gut microbiota is universally recognized as an active organ that can modulate the overall host metabolism by promoting multiple functions, from digestion to the systemic maintenance of overall host physiology. Dysbiosis, the alteration of the complex ecologic system of gut microbes, is associated with and causally responsible for multiple types of pathologies. Among the latters,...
متن کاملInsights Into Vaginal Bacterial Communities and Metabolic Profiles of Chlamydia trachomatis Infection: Positioning Between Eubiosis and Dysbiosis
Citation: Parolin C, Foschi C, Laghi L, Zhu C, Banzola N, Gaspari V, D’Antuono A, Giordani B, Severgnini M, Consolandi C, Salvo M, Cevenini R, Vitali B and Marangoni A (2018) Insights Into Vaginal Bacterial Communities and Metabolic Profiles of Chlamydia trachomatis Infection: Positioning Between Eubiosis and Dysbiosis. Front. Microbiol. 9:600. doi: 10.3389/fmicb.2018.00600 Insights Into Vagina...
متن کامل